菜種油かすの窒素肥効と鶏ふん堆肥の
新窒素肥効評価法に基づくタマネギの施肥法

井上勝広

キーワード：品質，無機，収量，早生，中生，有機

Method of Fertilizer Application for Onion based on Nitrogen Fertilizer Efficiency of Rapeseed Meal and New Estimation Method of Composted Poultry

Katsuhiro INOUE

目次

1. 緒言 .. 104

2. 材料および方法 ... 104
 1）鶏ふん堆肥および菜種油かすの速効性窒素発現評価法 104
 2）評価法に基づく化学肥料代替効果 104

3. 結果 ... 105
 1）鶏ふん堆肥および菜種油かすの速効性窒素発現評価法 105
 2）評価法に基づく化学肥料代替効果 106

4. 考察 ... 109

5. 摘要 ... 110

6. 引用文献 ... 110

Summary .. 111

本報告の一部は土壌肥料学会九州支部平成26年度秋季例会で発表した。
1. 緒言

有機栽培で生産性を維持するためには、家畜ふん堆肥などの有機質資材に含まれる肥料成分を活用しなければならない。堆肥として最も多く用いられている家畜ふん堆肥は、素材および製造法が多種多様なため、個々の堆肥で成分含量が大きく異なる。肥料価格の高騰により家畜ふん堆肥の高い肥料成分の利用が注目されているが、肥料または土壌改良資材としての位置づけが不明瞭であり、施用効果が明確に示されていないのが現状である。

古くから「土づくり」に用いられてきた作物残さ等を原料とする堆肥には肥料成分はあまり含まれていないが、家畜ふん堆肥には比較的多くの肥料成分が含まれる。一方で、ばらつきが大きい。肥料的な効果を念頭に置かずに施用すると、養分過剰による徒長や生理障害を起こす原因となる。また、特に窒素においては、その肥効率のばらつきが大きい。堆肥は窒素全量を表示することになっているが、肥効率のばらつきが大きいため作物に利用可能な窒素量の把握は困難である。さらに、窒素肥効の発現パターンが堆肥によって異なっている。したがって、作付体系との兼ね合いを考慮する必要があり、さらに適正な施用を妨げている。

高橋らは家畜ふん堆肥を易分解性有機物、難分解性有機物に区分することにより堆肥の肥料的、土壌改良的特徴を推測できると報告している。

2. 材料および方法

1）鶏ふん堆肥および菜種油かすの速効性窒素発現評価法

現在まで、有機質資材の窒素肥効率がいくつか報告されている。それらを一元化、整理した。

本試験で使用した菜種油かす、鶏ふん堆肥、牛ふん堆肥の成分特性をみるために、化学分析を行った。また、長崎県堆肥コンクールや鳥原振興局堆肥コンクールに出品された鶏ふん堆肥も分析した。有機物の分析は「日本土壌協会堆肥等有機物分析法（2010年版）」に基づき行った。

2）評価法に基づく化学肥料代替効果

長崎県農林技術開発センター大東地圃場で試験を行った。細粒黄色土において、早生種の「レクスター1号（七宝）」と中生種の「ターザン（七宝）」を供試し、タマネギの秋まき栽培（収穫期は翌年）を2012年度と2013年度の2か年行った。

2012年度は2012年9月26日に288穴セルトレイに播種して育苗し、11月22日に圃場に移植した。早生種は2013年5月1日に、中生種は6月3日に収穫した。2013年度は2013年9月26日に播種し、11月26日に移植した。早生種は2014年4月22日に、中生種は5月15日に収穫した。

栽培密度は1a当たり2,500株で、試験規模は1区36株の3分転で行った。2か年とも試験を開始する前に、ソルガムを付けし、クリーニング処理を行った。

菜種油かすの窒素肥効率は最も報告数の多い70%とした（表3）。鶏ふん堆肥の速効性窒素量は新窒素肥効評価法より、下記式で求めた。

\[
(\text{全窒素(DW%)})^2 - 2 \text{（kg/乾物t）} \]

・I式
また、郡司掲21は有機特肥料の施用法として、施用量は施施肥基準に従い、全体基施肥施用するとして基善と報告し、本試験はマルチ栽培であることがから、全区とも全体基施肥施用とした。

試験区の構成は表1のとおりである。①～⑦区の牛ぶん堆肥施用量は1a当たり150kgで、①区の硫安、過石、硫加はそれぞれ12.2kg、14.3kg、5.0kg、①区のたまれぎ名人は16.7kgとした。③～⑧区の速効性窒素成分は1a当たり2.5kgに揃えた。堆肥等施用と黒マルチの被覆は2012年11月21日と2013年11月26日に行った。収穫時に全体重（茎葉+球）、球重、球径、収量性、無機養分吸収量（N、P、K）を調査、分析した。また、生育途中の変化をみるため、対照区（早生種）の生育中庸種の乾物重、炭素同化量、窒素吸収量を随時調査、分析した。

収穫時収穫の全重（茎葉+球）、球重、球径、収量性、無機養分吸収量（N、P、K）を調査、分析した。また、生育途中の変化をみるため、対照区（早生種）の生育中庸種の乾物重、炭素同化量、窒素吸収量を随時調査、分析した。

なお、長崎県農林技術開発センター気象観測データを基に、栽培期間中の最高、最低、平均気温を旬別に整理した。

タマネギ植物体および栽培跡地土壌の化学分析は農林水産省「土壌環境基礎調査における土壌、水質及び作物体分析法」に基づき行った。3. 結果

1) 鳥ぶん堆肥および菜種油かすの速効性窒素発現評価法

過去の報告等整理し、鳥ぶん堆肥の窒素肥効率と窒素肥効量（表2）と菜種油かすの窒素肥効率と窒素肥効量（表3）を作成した。その結果、鳥ぶん堆肥（乾物当たり3〜4%）は窒素肥効率20〜40%、窒素肥効量7〜17kg/tの報告が多く、菜種油かすは窒素肥効率55〜78%，窒素肥効量36〜51kg/tであった。

本試験で用いた有機質資材の成分含量を表4に示した。全窒素および硝酸態窒素含量は高い方から、菜種油かす＞鳥ぶん堆肥＞牛ぶん堆肥であった。鳥ぶん堆肥の全窒素含有率は3.41%であった。EC、アンモニア態窒素、リン酸、石灰、塩土含量は鳥ぶん堆肥＞牛ぶん堆肥＞菜種油かすの順であった。特に、鳥ぶん堆肥の窒素含量は約3.41%であった。EC、アンモニア態窒素、リン酸、石灰、塩土含量は鳥ぶん堆肥＞牛ぶん堆肥＞菜種油かすの順であった。特に、

<table>
<thead>
<tr>
<th>区</th>
<th>内容</th>
<th>化学肥料由来</th>
<th>有機質資材由来</th>
<th>牛ぶん堆肥由来</th>
</tr>
</thead>
<tbody>
<tr>
<td>①</td>
<td>無堆肥+無肥料</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>②</td>
<td>牛ぶん堆肥+無窒素</td>
<td>-</td>
<td>2.5</td>
<td>2.5</td>
</tr>
<tr>
<td>③</td>
<td>牛ぶん堆肥+速効性化学肥料</td>
<td>2.5</td>
<td>2.5</td>
<td>-</td>
</tr>
<tr>
<td>④</td>
<td>牛ぶん堆肥+たまれぎ名人（対照）</td>
<td>2.5</td>
<td>2.5</td>
<td>3.6</td>
</tr>
<tr>
<td>⑤</td>
<td>牛ぶん堆肥+菜種油かす</td>
<td>-</td>
<td>1.5</td>
<td>0.8</td>
</tr>
<tr>
<td>⑥</td>
<td>牛ぶん堆肥+鳥ぶん堆肥</td>
<td>-</td>
<td>-</td>
<td>8.9</td>
</tr>
</tbody>
</table>

表2 鳥ぶん堆肥の窒素肥効率、窒素肥効量

<table>
<thead>
<tr>
<th>算出方法</th>
<th>室素肥効率 (%)</th>
<th>室素肥効量 (kg/乾物t)</th>
</tr>
</thead>
<tbody>
<tr>
<td>マニュアル2010</td>
<td>10</td>
<td>23</td>
</tr>
<tr>
<td>棚橋・矢野2004</td>
<td>10</td>
<td>20</td>
</tr>
<tr>
<td>窪谷ら2009</td>
<td>24</td>
<td>43</td>
</tr>
<tr>
<td>牛尾ら2009</td>
<td>50</td>
<td></td>
</tr>
<tr>
<td>上之薗ら1999</td>
<td>23</td>
<td></td>
</tr>
<tr>
<td>佐藤2010</td>
<td>25</td>
<td></td>
</tr>
<tr>
<td>上之薗ら2004</td>
<td>40</td>
<td></td>
</tr>
<tr>
<td>高橋ら2009</td>
<td>50</td>
<td></td>
</tr>
<tr>
<td>藤沼・中田1972</td>
<td>55</td>
<td></td>
</tr>
<tr>
<td>関東土肥専技会1996</td>
<td>70</td>
<td></td>
</tr>
</tbody>
</table>

全窒素濃度（乾物当り%）：2 3 4 5 6 2 3 4 5 6
現物は水分25%

表3 菜種油かすの窒素肥効率、窒素肥効量

<table>
<thead>
<tr>
<th>算出方法</th>
<th>窒素肥効率 (%)</th>
<th>窒素肥効量 (kg/乾物t)</th>
</tr>
</thead>
<tbody>
<tr>
<td>佐藤2010</td>
<td>55</td>
<td></td>
</tr>
<tr>
<td>郡司掛1999</td>
<td>56</td>
<td></td>
</tr>
<tr>
<td>塚見ら1984</td>
<td>70</td>
<td></td>
</tr>
<tr>
<td>藤沼・中田1972</td>
<td>78</td>
<td></td>
</tr>
</tbody>
</table>

全窒素濃度は乾物当り96.60%
表4 有機質資材の成分含量

<table>
<thead>
<tr>
<th>有機物資源</th>
<th>pH</th>
<th>EC (mS/cm)</th>
<th>水分 (%)</th>
<th>全炭素 (%)</th>
<th>全窒素 (%)</th>
<th>C/N 比</th>
<th>NH₃-N (%)</th>
<th>NO₃-N (%)</th>
<th>リン酸 (%)</th>
<th>加里 (%)</th>
<th>石灰 (%)</th>
<th>苦土 (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>菜種油かす</td>
<td>5.7</td>
<td>1.75</td>
<td>11.6</td>
<td>47.4</td>
<td>6.60</td>
<td>7.2</td>
<td>43</td>
<td>87</td>
<td>2.75</td>
<td>1.56</td>
<td>1.2</td>
<td>1.1</td>
</tr>
<tr>
<td>鶏ふん堆肥</td>
<td>8.8</td>
<td>5.91</td>
<td>21.2</td>
<td>28.8</td>
<td>3.41</td>
<td>8.4</td>
<td>329</td>
<td>19</td>
<td>3.93</td>
<td>4.01</td>
<td>28.0</td>
<td>2.3</td>
</tr>
<tr>
<td>牛ふん堆肥</td>
<td>8.6</td>
<td>4.94</td>
<td>41.5</td>
<td>39.4</td>
<td>2.43</td>
<td>16.2</td>
<td>183</td>
<td>13</td>
<td>3.35</td>
<td>5.25</td>
<td>3.2</td>
<td>1.9</td>
</tr>
</tbody>
</table>

水分は現物当たり、他は乾物当たり。

表5 長崎県内で生産された鶏ふん堆肥の全窒素含量

<table>
<thead>
<tr>
<th>調査年</th>
<th>n</th>
<th>平均</th>
<th>最大</th>
<th>最小</th>
</tr>
</thead>
<tbody>
<tr>
<td>2012年</td>
<td>11</td>
<td>3.0</td>
<td>4.9</td>
<td>1.9</td>
</tr>
<tr>
<td>2013年</td>
<td>5</td>
<td>3.6</td>
<td>5.7</td>
<td>2.4</td>
</tr>
</tbody>
</table>

t-test n.s.

乾物あたり%。

鶏ふん堆肥の石灰含量は極めて高かった。また、菜種油かす、鶏ふん堆肥のC/N比は低く、窒素を放出しやすいことがわかる。

2012年と2013年に長崎県内で生産された鶏ふん堆肥を分析した結果、全窒素含量に有意な差はなかった（表5）。供試した鶏ふん堆肥の窒素成分3.41%は長崎県内で生産された鶏ふん堆肥の平均的な濃度であった。

2) 評価法に基づく化学肥料代替効果

本試験で使用した鶏ふん堆肥は窒素成分3.41%なので、新窒素評価法では速効性窒素量は3.41%であり、乾物1t当たり9.6kgであり、標準窒素施用量1a当たり2.5kgの乾物投入量は260kg/a、現物投入量は329kg/a（水分21.2%）であった。ここで、1a当量ヤー速効性窒素2.5kgを放出する鶏ふん堆肥の投入量を図1に示した。全窒素濃度により投入量が大きく変化する。

供試した菜種油かすは窒素成分6.60%、窒素無機化率70%であったので、標準窒素施用量1a当たり2.5kgの乾物投入量は54kg/a、現物投入量は61kg/a（水分11.6%）であった。ここで、速効性窒素放出量に対する菜種油かすの投入量を図2に示した。

栽培期間中の旬別の平均気温を図3に示した。2012年作は平年に比べて12月上旬～1月中旬と4月上旬～5月上旬の長い期間で低く推移した。2013年作はほぼ平年と同様に推移した。

図1 速効性窒素2.5kg/aを放出する鶏ふん堆肥の投入量モデル

図2 速効性窒素放出量に対する菜種油かすの投入量モデル

全窒素濃度6.6DW%，窒素無機化率70%
タマネギ早生種の収量性を表6に示した。球重，球径，収量ともに2013年作が2012年作を上回った。2ヵ年平均の収量は多い方から⑥区，⑤区，④区，③区，②区，①区の順であったが，⑥区，⑤区，④区間に有意差はなかった。タマネギ中生種の収量性を表7に示した。①，②区の球重，球径，収量は2013年作が2012年作を上回ったが，③，④，⑤，⑥区は逆に2012年作が2013年作を上回った。2ヵ年平均の収量は多い方から⑥区，⑤区，④区，③区，②区，①区の順であったが，④区と⑤区間，⑤区と③区間に有意差はなかった。

また，牛ふん堆肥に栄養素がはい，牛ふん堆肥を上乗せすることにより収量は牛ふん堆肥のみ（②区）の2倍以上であった（表6，表7）。

表8 タマネギの乾物重，無機養分吸収量

<table>
<thead>
<tr>
<th>品種</th>
<th>部位</th>
<th>区</th>
<th>乾物重 (g/株)</th>
<th>N</th>
<th>P2O5</th>
<th>K2O</th>
</tr>
</thead>
<tbody>
<tr>
<td>早生</td>
<td>茎葉</td>
<td>①</td>
<td>0.3</td>
<td>27</td>
<td>10</td>
<td>44</td>
</tr>
<tr>
<td></td>
<td></td>
<td>②</td>
<td>0.6</td>
<td>47</td>
<td>26</td>
<td>76</td>
</tr>
<tr>
<td></td>
<td></td>
<td>③</td>
<td>1.1</td>
<td>85</td>
<td>22</td>
<td>142</td>
</tr>
<tr>
<td></td>
<td></td>
<td>④</td>
<td>1.4</td>
<td>129</td>
<td>17</td>
<td>201</td>
</tr>
<tr>
<td></td>
<td></td>
<td>⑤</td>
<td>1.7</td>
<td>136</td>
<td>25</td>
<td>192</td>
</tr>
<tr>
<td></td>
<td></td>
<td>⑥</td>
<td>2.2</td>
<td>211</td>
<td>34</td>
<td>322</td>
</tr>
</tbody>
</table>

栽培期間中の旬別平均気温

<table>
<thead>
<tr>
<th>月</th>
<th>旬</th>
<th>気温 (℃)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>上</td>
<td>20</td>
</tr>
<tr>
<td>2</td>
<td>中</td>
<td>25</td>
</tr>
<tr>
<td>3</td>
<td>下</td>
<td>30</td>
</tr>
</tbody>
</table>

表7 タマネギ中生種の収量性

<table>
<thead>
<tr>
<th>期間</th>
<th>区</th>
<th>乾物重 (g/個)</th>
<th>球重 (g/個)</th>
<th>球径 (cm)</th>
<th>収量 (kg/a)</th>
<th>指数</th>
</tr>
</thead>
<tbody>
<tr>
<td>2012年度</td>
<td>①</td>
<td>0.3</td>
<td>27</td>
<td>10</td>
<td>44</td>
<td></td>
</tr>
<tr>
<td></td>
<td>②</td>
<td>0.6</td>
<td>47</td>
<td>26</td>
<td>76</td>
<td></td>
</tr>
<tr>
<td></td>
<td>③</td>
<td>1.1</td>
<td>85</td>
<td>22</td>
<td>142</td>
<td></td>
</tr>
<tr>
<td></td>
<td>④</td>
<td>1.4</td>
<td>129</td>
<td>17</td>
<td>201</td>
<td></td>
</tr>
<tr>
<td></td>
<td>⑤</td>
<td>1.7</td>
<td>136</td>
<td>25</td>
<td>192</td>
<td></td>
</tr>
<tr>
<td></td>
<td>⑥</td>
<td>2.2</td>
<td>211</td>
<td>34</td>
<td>322</td>
<td></td>
</tr>
</tbody>
</table>

栽培期間中の日別平均気温

<table>
<thead>
<tr>
<th>日</th>
<th>旬</th>
<th>気温 (℃)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>上</td>
<td>20</td>
</tr>
<tr>
<td>2</td>
<td>中</td>
<td>25</td>
</tr>
<tr>
<td>3</td>
<td>下</td>
<td>30</td>
</tr>
</tbody>
</table>
表9 タマネギの乾物重,無機養分吸収量

<table>
<thead>
<tr>
<th>品種</th>
<th>部位</th>
<th>乾物重 (g/株)</th>
<th>無機養分吸収量 (g/a)</th>
<th>窒素</th>
<th>炭素同化量</th>
<th>炭素同化量 (g/株)</th>
</tr>
</thead>
<tbody>
<tr>
<td>茎葉</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>①</td>
<td>2.0</td>
<td>91</td>
<td>53</td>
<td>125</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>②</td>
<td>3.7</td>
<td>157</td>
<td>88</td>
<td>231</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>③</td>
<td>6.6</td>
<td>419</td>
<td>91</td>
<td>587</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>④</td>
<td>7.2</td>
<td>442</td>
<td>104</td>
<td>595</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>⑤</td>
<td>7.2</td>
<td>415</td>
<td>154</td>
<td>492</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>⑥</td>
<td>7.5</td>
<td>423</td>
<td>173</td>
<td>526</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>早生球</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>①</td>
<td>8.9</td>
<td>110</td>
<td>104</td>
<td>185</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>②</td>
<td>14.3</td>
<td>173</td>
<td>180</td>
<td>318</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>③</td>
<td>22.4</td>
<td>440</td>
<td>248</td>
<td>536</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>④</td>
<td>25.8</td>
<td>412</td>
<td>287</td>
<td>550</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>⑤</td>
<td>24.1</td>
<td>407</td>
<td>310</td>
<td>545</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>⑥</td>
<td>25.4</td>
<td>422</td>
<td>335</td>
<td>592</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>全体</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>①</td>
<td>10.9</td>
<td>201</td>
<td>157</td>
<td>320</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>②</td>
<td>18.0</td>
<td>329</td>
<td>268</td>
<td>549</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>③</td>
<td>29.0</td>
<td>859</td>
<td>339</td>
<td>1,123</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>④</td>
<td>31.0</td>
<td>854</td>
<td>391</td>
<td>1,145</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>⑤</td>
<td>31.3</td>
<td>822</td>
<td>464</td>
<td>1,037</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>⑥</td>
<td>32.8</td>
<td>845</td>
<td>598</td>
<td>1,118</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

表10 タマネギ栽培地土壌の化学性

<table>
<thead>
<tr>
<th>品種</th>
<th>部位</th>
<th>取採日</th>
<th>pH</th>
<th>EC</th>
<th>無機態</th>
<th>可溶性</th>
<th>交換性</th>
<th>CEC</th>
<th>埴基</th>
<th>飽和度</th>
<th>塩基</th>
<th>飽和度</th>
<th>CEC</th>
<th>埴基</th>
<th>飽和度</th>
</tr>
</thead>
<tbody>
<tr>
<td>早生</td>
<td></td>
</tr>
<tr>
<td>①</td>
<td>6.0</td>
<td>0.15</td>
<td>1.1</td>
<td>48</td>
<td>70</td>
<td>319</td>
<td>41</td>
<td>17.5</td>
<td>85</td>
<td>-</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>②</td>
<td>6.4</td>
<td>0.09</td>
<td>1.2</td>
<td>61</td>
<td>84</td>
<td>314</td>
<td>41</td>
<td>17.9</td>
<td>85</td>
<td>-</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>③</td>
<td>6.1</td>
<td>0.15</td>
<td>1.4</td>
<td>88</td>
<td>99</td>
<td>347</td>
<td>49</td>
<td>19.5</td>
<td>87</td>
<td>-</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>④</td>
<td>6.2</td>
<td>0.09</td>
<td>1.8</td>
<td>61</td>
<td>61</td>
<td>319</td>
<td>47</td>
<td>18.1</td>
<td>83</td>
<td>-</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>⑤</td>
<td>6.3</td>
<td>0.09</td>
<td>1.9</td>
<td>39</td>
<td>36</td>
<td>302</td>
<td>48</td>
<td>16.1</td>
<td>86</td>
<td>-</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>⑥</td>
<td>6.7</td>
<td>0.14</td>
<td>3.0</td>
<td>75</td>
<td>66</td>
<td>359</td>
<td>51</td>
<td>17.1</td>
<td>98</td>
<td>-</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>⑦</td>
<td>6.2</td>
<td>0.07</td>
<td>0.4</td>
<td>41</td>
<td>257</td>
<td>34</td>
<td>33</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>中生</td>
<td></td>
</tr>
<tr>
<td>①</td>
<td>6.6</td>
<td>0.07</td>
<td>0.7</td>
<td>40</td>
<td>47</td>
<td>289</td>
<td>35</td>
<td>17.5</td>
<td>75</td>
<td>-</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>②</td>
<td>6.4</td>
<td>0.12</td>
<td>0.9</td>
<td>60</td>
<td>81</td>
<td>345</td>
<td>45</td>
<td>18.1</td>
<td>90</td>
<td>-</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>③</td>
<td>6.2</td>
<td>0.10</td>
<td>0.9</td>
<td>48</td>
<td>60</td>
<td>305</td>
<td>36</td>
<td>18.0</td>
<td>78</td>
<td>-</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>④</td>
<td>6.3</td>
<td>0.11</td>
<td>1.1</td>
<td>48</td>
<td>59</td>
<td>318</td>
<td>50</td>
<td>16.6</td>
<td>91</td>
<td>-</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>⑤</td>
<td>6.5</td>
<td>0.08</td>
<td>1.3</td>
<td>40</td>
<td>43</td>
<td>316</td>
<td>54</td>
<td>16.9</td>
<td>88</td>
<td>-</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>⑥</td>
<td>6.6</td>
<td>0.15</td>
<td>3.0</td>
<td>81</td>
<td>61</td>
<td>447</td>
<td>63</td>
<td>16.9</td>
<td>120</td>
<td>-</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

また, 牛ぶん堆肥に菜種油かす, 鳥ふん堆肥を上乗せすることにより, 無機養分吸収量も大幅に増加した（表8, 表9）。

早生種の乾物重,炭素同化量,窒素吸収量の推移を図4に示した。3月に入ってから乾物重が急増し,収穫時まで増加し続けた。併せて窒素,炭素含量も急激に増加した。

栽培地土壌の化学性をみると, 鳥ふん堆肥（③）区で無機態窒素,可給態リン酸,石灰,苦土が多く残存し,塩基飽和度も他よりも高かった（表10）。

図4 タマネギ早生種の乾物重,炭素同化量,窒素吸収量
表11 各種資材の経費

<table>
<thead>
<tr>
<th>資材名</th>
<th>施用量 (kg/a)</th>
<th>経費 (円/a)</th>
<th>備考</th>
</tr>
</thead>
<tbody>
<tr>
<td>牛ふん堆肥</td>
<td>150</td>
<td>972</td>
<td>バラ,水分41.5%</td>
</tr>
<tr>
<td>速効性化学肥料</td>
<td>備考</td>
<td>2,525</td>
<td>硫安12kg,硫加5kg,過石14kg</td>
</tr>
<tr>
<td>たまねぎ名人</td>
<td>17</td>
<td>3,151</td>
<td>窒素成分の60%はLP40</td>
</tr>
<tr>
<td>菜種油かす</td>
<td>61</td>
<td>3,037</td>
<td>袋,水分11.6%</td>
</tr>
<tr>
<td>鶏ふん堆肥</td>
<td>329</td>
<td>3,290</td>
<td>バラ,水分21.2%</td>
</tr>
<tr>
<td>鶏ふん堆肥</td>
<td>329</td>
<td>6,580</td>
<td>袋,水分21.2%</td>
</tr>
</tbody>
</table>

鶏ふん堆肥の有効利用は耕種側にとって土づくり,施肥コストの縮減,畜産側にとっては家畜排せつ物が積極的に引き取られるという耕地双方にメリットがある。

家畜ふん堆肥の有効利用は耕種側にとっては土づくり,施肥コストの縮減,畜産側にとっては家畜排せつ物が積極的に引き取られるという耕地双方にメリットがある。

各種資材の経費を表11に示した。速効性化学肥料,たまねぎ名人,菜種油かす,鶏ふん堆肥（バラ）の経費はほぼ同等であった。

養分含量は乾物重×その含有率であり,無機養分吸収量の多少は乾物重の大小でほぼ決定した。一方,タマネギ栽培における窒素やリン酸過剰,あるいはカルシウムやカリウム不足は風乾歩合が下がって病害抵抗性が低下するため,球腐れしやすくなる（相馬18,山田25）。そのため,タマネギの貯蔵栽培では多肥栽培は避ける傾向にある。特に,鶏ふん堆肥区の球の窒素,リン酸吸収量は2013年度の早生を除いて最も多く（表8,表9）。本試験では大球が収穫できたものの,球腐れへの影響は確認していないので今後の残された課題となる。

また,本試験では生産阻害は確認されなかったが,菜種油かすにはフェノール等の発芽,生育阻害物質が含まれる（田知本ら19）と報告されているので,移植日の2週間くらい前に施用するのが望ましい。

鶏ふん堆肥は全窒素含量が増加するほど,窒素無機化率と窒素無機化量が増加するが（棚橋,矢野21）,有機質肥料の無機化には土壌微生物が関与するため,その活性は土温に影響される（藤沼,田中21）。本試験はマルチ栽培のため土温が高く,養分吸収量が増加する3月からは気温も上昇する

4. 考察

養分吸収量は乾物重×その含有率であり,無機養分吸収量の多少は乾物重の大小でほぼ決定した。一方,タマネギ栽培における窒素やリン酸過剰,あるいはカルシウムやカリウム不足は風乾歩合が下がって病害抵抗性が低下するため,球腐れしやすくなる（相馬18,山田25）。そのため,タマネギの貯蔵栽培では多肥栽培は避ける傾向にある。特に,鶏ふん堆肥区の球の窒素,リン酸吸収量は2013年度の早生を除いて最も多く（表8,表9）。本試験では大球が収穫できたものの,球腐れへの影響は確認していないので今後の残された課題となる。

また,本試験では生産阻害は確認されなかったが,菜種油かすにはフェノール等の発芽,生育阻害物質が含まれる（田知本ら19）と報告されているので,移植日の2週間くらい前に施用するのが望ましい。

鶏ふん堆肥は全窒素含量が増加するほど,窒素無機化率と窒素無機化量が増加するが（棚橋,矢野21）,有機質肥料の無機化には土壌微生物が関与するため,その活性は土温に影響される（藤沼,田中21）。本試験はマルチ栽培のため土温が高く,養分吸収量が増加する3月からは気温も上昇する

長崎県水田,畑地,樹園地では,難分解性有機物の投入量が増加している半面,易分解性有機物の減少がみられる（井上ら6,7,8）。この原因として長崎県ではオガクズ等の林業残さを多く含む牛ふん堆肥が主流であることと,完熟発酵していない未熟堆肥が農耕地に施用されていることが挙げられる。

タマネギ栽培試験において菜種油かすや鶏ふん堆肥等の有機質資材でも慣行の化学肥料と同等以上の収量が得られた。すなわち,新窒素肥料評価法に基づく鶏ふん堆肥および菜種油かすをタマネギの基肥に用いることで,化学肥料の代用となることが累了と判断された。また,2012年作は気温が平年に比べて12月上句から4月上旬の長い期間で低く推移したため,2012年作が2013年作より低収傾向となった。

家畜ふん堆肥の有効利用は耕種側にとっては土づくり,施肥コストの縮減,畜産側にとっては家畜排せつ物が積極的に引き取られるという耕地双方にメリットがある。
ことから、順調に生育したと考えられる。根の生育は茎葉の生長より約20日間早く生育が進むといわれる2）11月〜2月は茎葉の生育がとても遅いものの、生育の基盤である根がゆっくりと伸長する重要な時期である。その過程を経て、3月に入ってから全体の乾物重が急増し、収穫時まで増加し続ける（図4）。併せて窒素吸収量、炭素同化量も急増する。

本試験の前提として、I式を鶏ふん堆肥の速効性窒素量とみなしている。しかしながら、市川ら5）はマニュアル10）で鶏ふん堆肥の速効性窒素量の形態とされたアンモニア態窒素と尿酸態窒素の合計量はI式と必ずしも一致しないと報告している。速効性窒素の形態が何であるのか、更なる検証が必要と思われる。

5. 摘 要

窒素肥効率に基づく菜種油かすと新窒素肥効評価法に基づく鶏ふん堆肥からの速効性窒素量を算出し、タマネギ栽培における全量基肥施肥法について検討した結果、
①長崎県内で生産された鶏ふん堆肥の全窒素濃度は平均で3.0〜3.6％であった。
②鶏ふん堆肥（乾物当たり3〜4％）は窒素肥効率20〜40％、窒素肥効量7〜17kg/tの報告が多く、菜種油かすは窒素肥効率55〜78％、窒素肥効量36〜51kg/tであった。
③タマネギは3月以降に乾物重、窒素吸収量、炭素同化量が急増した。
④窒素肥効率に基づく菜種油かすと新窒素肥効評価法に基づく鶏ふん堆肥のタマネギ栽培に対する利用は、化学肥料代替施肥法として可能であった。
⑤鶏ふん堆肥および菜種油かすの経費は化学肥料とほぼ同等であった。

6. 引用文献

1) 藤沼善亮・田中房江：有機質肥料に関する研究 第1報 各種有機質肥料の窒素の無機化について、農技研肥料化学科資料、168、1-45（1972）
2) 郡司掛則昭：農業技術大系野菜編4、有機質肥料中心の施肥法、農文協、基p.275-278（1999）
3) 郡司掛則昭：農業技術大系土壌施設編7(1)、有機質肥料の分解特性、農文協、肥料p.256の2-256の8（1999）
4) 原田靖生：農業技術大系畜産編8、家畜ふん堆肥の腐熟度、農文協、p.127-133（1993）
5) 市川あゆみ・増田達明・山田尚美・鈴木良地・榊原幹男：新窒素肥効評価法における家畜ふん堆肥の分析値と窒素肥効、愛知農総試研報、42、125-133（2010）
6) 井上勝広・藤山正史・前田ゆかり：水稲に対するナタネ油粕の施用法、福岡農総試研報、A-11、9-14（1991）
7) 藤沼善亮・田中房江：有機質肥料の窒素無機化パターン、福岡農総試研報、B-4、63-66（1984）
Summary

Total nitrogen concentration of composted poultry produced in Nagasaki Prefecture was 3.0 to 3.6% on average.

Nitrogen fertilizer response of composted poultry were mainly reported 20 to 40%, and 7 to 17 kg per ton. Nitrogen fertilizer response of rapeseed meal were mainly reported 55 to 78%, and 36 to 51 kg per ton.

Dry weight, nitrogen content, carbon content of onion increased dramatically in early March.

Method of fertilizer application for onion based on nitrogen fertilizer efficiency of rapeseed meal and new estimation method of composted poultry were able to substitute for chemical fertilizer.

Costs of composted poultry and rapeseed meal were equivalent to chemical fertilizer.