「成果情報名」施設メロン後作軟弱葉菜類の栽培適応性と生育・収量の予測

[要約] チンゲンサイ、チョウホウナ等の葉菜類は、収穫までの栽培期間が短く、施設栽培の輪作品目として有望である。調整池原水を用いたかん水で収穫物の汚れや塩害の発生はなく、栽培適応性は高い。は種後の生育積算温度と株重量の間に相関が高く、収量の予測が可能である。

[キーワード] 諫早湾干拓、施設メロン後作、葉菜類、チョウホウナ、チンゲンサイ、 生育日数、生育積算温度

[担当]総合農林試験場·企画経営部·干拓科

[連絡先] 電話0957-35-1272

「区分〕総合・営農(干拓)

[分類] 指導

[背景・ねらい]

諫早湾干拓地における施設園芸作物の輪作体系の中で、年2作のメロン栽培は次作までの間隔が短く、土づくり、クリーニングクロップとしての緑肥等の作付が困難である。 そこで短期間で収穫が可能な軟弱葉菜類の生育、収量について調査し、施設の有効利用を図る。

[成果の内容・特徴]

- 1. ホウレンソウ、コマツナ、チョウホウナ、ミズナは、11月中旬は種の作型で、は種後35日前後、生育積算温度600℃前後で収穫期に達し、約1ヶ月間の収穫が可能である。10a換算で2,000~4,000kg/10aの範囲の収量で、塩害や生理障害、病害虫の発生は少なく、栽培適応性は高い。(表1)
- 2. チンゲンサイは、11月中旬~12月上旬は種の作型で、は種後60日前後で収穫期に達し、約1ヶ月間の収穫が可能である。移植栽培で生育が揃い、収量性は高い。 塩害や生理障害、病害虫の発生は少なく、栽培適応性は高い。(表1)
- 3. 各品目ともは種後の生育日数、生育積算温度と株重量との間に高い相関があり、収量 予測が可能となる。(表 2)

[成果の活用面、留意点]

- 1. 施設は無加温、単棟ハウスでの結果である。気温との相関が高いことから、早進化を 図るため内カーテン、内トンネル等を被覆し保温に努める。
- 2. 施肥は、メロン後の肥料成分の残量を考慮し、土壌診断後、減肥栽培に努める。 窒素肥料のみの施肥とする。
- 3. かん水は発芽や初期生育を促進するため適宜行い、生育の中期以降は控える。
- 4. その他の管理は、一般栽培に準ずる。
- 5. 本情報は、諫早湾干拓営農技術対策の指針へ反映させる。

[具体的データ]

表-1 年次別の作柄状況と収穫開始までの日数及び積算温度、期間中の収量

	.,	11 4 5 45	0 1 12 4 1 1 1 1 1 1				v · ===	
品目	年次	は種	収穫	は種 後 日数	は種後 生育 積算温度	注3) 収 量	平均 株重	収穫終 期の収 量
		(月/日)	(月/日)	(日)	$(^{\circ}\!\mathbb{C})$	(kg/10a)	(g)	(kg/10a)
ホウレンソウ	16年	11/15	$12/24 \sim 1/31$	39	605	4,358	54.5	
	17年	11/10	$1/06 \sim 1/30$	57	698	2,378	29.7	3,353
コマツナ	16年	11/15	$12/15 \sim 1/31$	30	475	1,636	20.5	
	17年	11/10	$1/06 \sim 1/30$	57	698	4,427	55.3	4,977
チョウホウナ	17年	10/14	$11/17 \sim 12/27$	34	587	3,845	48.1	
	18年	12/04	$1/29 \sim 2/26$	56	773	3,347	47.5	4,831
ミズナ	17年	10/14	$11/17 \sim 1/06$	34	587	4,460	55.7	
チンゲンサイ	18年	12/04	$2/05 \sim 2/26$	63	869	1,944	70.2	4,891
	19年	11/13	$1/10 \sim 2/04$	58	912	4,132	124.0	7,943

注1)ホウレンソウ、コマツナ、チョウホウナ、ミズナは20g/株以上

注2)19年のチンゲンサイは移植栽培

注3)収量は期間中の収量

表-2 生育積算温度と株当り重量との関係

品目	年次	回帰式	寄与率
ホウレンソウ	17年産	y= -9E-07x ² +0.0409x	r ² =0.7050
コマツナ	17年産	$y = -2E - 06x^2 + 0.0519x$	r ² =0.8668
チョウホウナ	18年産	$y = -8E - 05x^2 + 0.2154x - 88.154$	r ² =0.8489
チンゲンサイ	19年産	$y = 0.0024x^2 - 2.9347x + 933.9$	r ² =0.7652

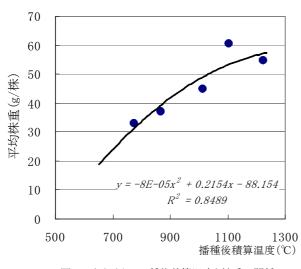


図-1 チョウホウナのは種後積算温度と株重の関係

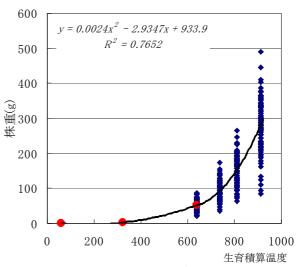


図-2 チンゲンサイのは種後積算温度と株重の関係

[その他]

研究課題名:2)諫早湾干拓営農対策試験(2)営農対策試験②施設野菜栽培法

予算区分:県単

研究期間:2004~2007年度 研究担当者:小林雅昭

発表論文等:17年度研究成果情報[研究]施設メロン後作のコマツナ、ホウレンソウの経

営規模決定プログラムの作成

諫早湾干拓営農対策試験成績書(平成16、17年度、18年度)