ハイブリッド DLC 膜合成およびエッチング技術開発と応用化研究

場恒明	馬	技術部長	欠長兼応	
村隆夫	森	教		長崎大学工学部
山雅美	池	リーダー	グルー	(独)産業技術総合研究所中部センター
田英司	古	締役社長	制 代表	ファインコーティング
.Ensinger	W.	授	补大学	ダムシュタット工

ハイブリッドダイヤモンドライクカーボン(DLC)膜作製法として、有機金属化合物を炭化水素プラズマ原料 ガスに添加するとともに、マイクロ波、高周波などの外部プラズマ励起源を用い、基材に対し高電圧パルスを印 加するプラズマソースイオン注入(PSII)法を用いた。そのために、先ず装置の改造を行い、種々原料および成 膜条件を変えることにより DLC 膜を作製し、成膜条件が膜構造および特性に及ぼす効果を明らかにした。また、 スパッタ技術開発では、PSII法を基本原理とし、半導体製造プロセスで生成したダミー用シリコンウエハの再 生、および DLC 膜をコーティングした各種治具の再生のために、生成膜を反応性スパッタにより高速で除去す る技術開発を行い、これを多段化することによる量産化プロセスを開発した。

1.緒 言

半導体シリコンウエハサイズ300mm時代を迎え、 研磨、搬送治具が大型化し、また研磨工程においては 高い精度が要求されている。さらに治具が大型化する のに伴い消耗部品のコストも高くなることから、コー ティングなど表層改質による部品の高精度化、長寿命 化が要求されている。このような産業ニーズに対し、 DLC 膜コーティングが適用され初められているがさ らなる特性向上が望まれている。また、DLC 膜は加 熱により通常700K 近傍からグラファイト構造への結 晶化を始め、高温での使用に限界があった。

さらに、半導体製造において、工程管理のために商 品とはならない多数のダミーウエハが用いられており、 効率の良い製造を可能にするために、ダミーウエハの 再利用プロセス開発が望まれている。また、DLC 膜 が産業に定着しつつあるが、再コーティングの必要性 から、効率的な DLC 膜の除去技術の確立が望まれて いる。

そこで、本研究では、保有しているプラズマとイオ ン注入に関するドライプロセス技術を要素技術として、 このような産業ニーズに応えるために、従来の非晶質 構造の中にナノハイブリッド構造を持つ DLC 膜作製 技術開発、および反応性スパッタを用いた大面積ス パッタ技術開発を行うものである。

なお、本研究は平成19年度から平成21年度までの3 ヵ年間の計画で行っており、本報は平成21年度の実施 研究内容についてまとめたものである。本報では、DLC 膜の高機能化を目的にフッ素を添加した DLC 膜を作 製し、特性解析を行った。また、産業ニーズが高い細 管内壁への DLC 膜コーティングについて検討した。 さらに、DLC 膜をコーティングした各種治具の再生 のために、DLC 膜のエッチング除去についても技術 開発を行った。

2.実験方法

2.1 含フッ素 DLC 膜の作製

薄膜作製に用いた装置は当所において開発した PSII 装置である。薄膜作製用基板には、鏡面研磨し たシリコンウエハ(100)およびステンレス鋼 SUS304 を用いた。PSII 法による DLC 膜の作製方法は次のと おりである。DLC 膜の炭化水素原料としてアセチレ ンガス(C₂H₂)を用い、フッ素を添加するために4フッ 化メタン(CF₄)、フッ化ベンゼン(C₆H₅F)および6 フッ化ベンゼン(C₆F₆)を用いた。基板に印加するバ イアス電圧として、DC 電圧は0と-2kVであり、 パルスバイアス電圧は-18 - 16kVで、パルス周波数 100Hz、パルス時間100µsである。これらを重畳した 電圧を印加することによりイオン注入および薄膜作製 を行った。

2.2 管内壁への DLC 膜作製

基板には、内径20mm および10mm、長さ100mm お

よび200mmのステンレス鋼を用い、分析用に約2mm のシリコンウエハストリップを管内部に設置した。炭 素イオン注入用のプラズマ源としてメタンガスを用い た。パルス電圧条件は、電圧を - 18kV、周波数1kHz、 パルス幅10µs である。

DLC 膜コーティングには C₂H₂ガスを用いた。この ときのパルス条件は、電圧 - 18kV、周波数100Hz、パ ルス幅100μs である。

2.3 DLC 膜再コーティングのためのエッチング

厚さ約1μmのDLC 膜をコーティングしたシリコ ンウエ八片を固定した300mm×300mm、厚さ1mmの ステンレス鋼電極を縦方向に絶縁固定し、バイアス電 圧印加用電線を接続した。エッチングには酸素ガスプ ラズマを用い、種々条件を変えてDLC 膜の分解剥離 速度を調べた。

2.4 表層分析および特性評価

PSII法により作製した薄膜の表面形態観察には走 査型電子顕微鏡(SEM)および原子間力顕微鏡(AFM) を用いた。生成した膜の膜厚測定には断面SEMを用 いた。表層の組成および化学結合状態の分析にはオー ジェ電子分析(AES)、二次イオン質量分析(SIMS)、 Mg Kα線を励起源としたX線光電子分析(XPS)を 用いた。またDLC膜の構造解析にはラマン分光を用

No.	gas	Pulse voltage (- kV)	DC voltage (- kV)	Repetition (Hz)	Duration (s)	CH4 Implantation(h)	Process time(h)
1	CF ₄	18		1 k	10		1
2	CF ₄	18		2 k	5		1
3	CF ₄	18		100	100		3
4	C_6H_5F	18		1 k	10		2
5	C ₆ H ₅ F	18		100	100		2
6	C ₆ H ₅ F	18		1 k	10	15	0.3
		18		100	100		1
7	C ₆ H ₅ F	18		1 k	10	0.8	0.3
		16	2	100	100		0.7
8	C ₆ H ₅ F	18		100	100		12
9	C_6H_5F	18		100	100		13
10	C_6F_6	16	2	100	100		2
11	C_2H_2	18		100	100		2

表1 FDLC 膜の作製条件

いた。

表層の特性評価として、DLC 膜の硬度測定には最 大荷重200μN としたインデンテーション法を用いた。 また、トライボロジー特性を評価するために、直径6 mmのWCボールを用い、ボール・オン・ディスク試 験機を用いて、荷重2Nでの摩擦係数を測定した。薄 膜の環境遮断性について検討するために、5%H₂SO4 水溶液中でのサイクリックボルタンメトリー(CVM) 測定を行った。

3.結果と考察

3.1 含フッ素 DLC 膜

含フッ素 DLC (FDLC) 膜の作製条件を表1に示す。
試料番号6および7については、薄膜作製に先立ち
CH4注入を行った。

作製した薄膜の表面を SEM で観察した結果、非常 に平滑で、何ら特徴的な表面形態は観察されなかった。

DLC 膜中の F 原子の濃度および化学結合状態につ いて調べるために XPS 分析を行った。FDLC6につい て、C1s および F1s 光電子スペクトルを図2に示す。 これらのピーク強度から、3 Aat.%Fを含む DLC 膜で あることがわかった。C 原子は C-C 結合状態にあり、 F は F-C 結合状態に近いことがわかる。

図3に水の接触角に及ぼすDLC 膜中のF濃度の効 果について示す。Fを含まないDLC 膜の接触角は約 60°であり、F濃度増加に伴い大きくなり、F25at.%-DLC 膜では98°まで増加している。ポリ四フッ化エ チレンの接触角は115°であるので、F添加により撥 水性が大きく付与されていることがわかる。

薄膜には種々の原因による欠陥があるため、1µm程 度の薄膜で腐食環境における環境遮断性を付与するこ とは困難である。そこで、Fを添加した DLC 膜の撥 水性を活かした環境遮断性付与効果について検討した。

図 2 XPS により分析した FDLC 6 の C 1 s および F 1 s 光電子スペクトル

5%H₂SO₄水溶液中測定した CVM の第一掃引曲線を 図4に示している。予めメタンイオン注入した試料で は、電流密度は約3桁低く、環境遮断性が付与されて いることがわかる。

F-DLC 膜の耐摩耗性について調べるために、荷重 2Nでボール・オン・ディスク試験を行った。その結 果を図5に示している。C₆F₆から作製した25 2at.%F-DLCでは、測定初期においては低い摩擦係数を維持 しているが、2000回から急激な増加を示している。一 方、C₆H₅Fから作製した3 4at.%F-DLC 膜ではパルス 電圧とDC 電圧の重畳の有無に関わらず0 05から0.1 の低い摩擦係数が得られており、高い撥水性と優れた しゅう動性が得られていることがわかる。

3.2 管内壁への DLC 膜作製

図6に SIMS で分析した CH4注入後の内径10mm、

図 5 DLC および F-DLC 膜のボール・オン・ディス ク試験結果

長さ200mmのステンレス管の両端と中央内壁のCおよびHの深さ分布を示している。何れの位置においても CH₄の構成元素である CおよびHが注入されていることがわかる。

DLC 膜の管内壁への均一膜厚コーティングの可能 性について調べた。図7に内径20mm および10mm、 長さ100mm および200mm のステンレス鋼管内壁に生 成した DLC 膜の厚さの位置依存性を示している。

何れの管についても内壁全面に DLC 膜が生成して おり、また膜厚の違いも小さい。

以上の結果から、管内壁に対し、イオン注入および DLC 膜コーティングが可能であることがわかる。

3.3 DLC 膜再コーティングのためのエッチング

プラズマによるエッチングにはアルゴンプラズマに

図 6 SIMS で分析した CH₄注入後の内径10mm、長さ 200mmのステンレス鋼管内壁の C および H の深さ分布

図7 C₂H₂プラズマにより作製したステンレス鋼管内 壁の DLC 膜の厚さ

代表される物理エッチングと活性種による化学エッチ ングがある。DLC 膜の再コーティングのためには既 存の膜を剥離する必要があり、DLC 膜は炭素から成 るので、酸素プラズマによる化学エッチングが効果的 であることが予測される。図8にDLC 膜のエッチン グ速度に及ぼす導入酸素ガス流量依存性を示す。ガス 濃度増加に伴いプラズマ密度が増すが、一方ガス濃度 増加に伴い気相に存在する種の平均自由行程が短くな り、DLC 膜に衝突する酸素イオン、ラジカル数が減 少することによりエッチング速度が減少すると考える ことができる。

ガス導入量依存性

4.結 言

本研究において、ハイブリッド DLC 膜合成および エッチング技術開発と応用化に関する技術開発を行っ た。3ヶ年間の研究成果を以下に要約する。

- DLC 膜作製の原料としてアセチレンガスに加え て種々の濃度の TMS を用いることにより、種々の Si 濃度を持つ DLC 膜を作製し、TMS 濃度が膜組成、 膜構造に及ぼす影響が明らかとなった。
- Si の添加は DLC 膜の加熱結晶化を抑制し、DLC 膜の高温での使用が可能となった。
- Si添加により摩擦係数が減少し、24at.%Si-DLC において0.03の低い摩擦係数が得られた。
- (4) DLC 膜などコーティング膜の除去を行うために、 アルゴンガスおよび酸素ガスによるプラズマを用い て、PSII 法によりエッチングを行い、大面積への 適用が可能であることが明らかとなった。
- (5) DLC コーティングをスクリーンマスクに適用し、従来品より性能が大きく改善された。
- (6) フッ素を添加した DLC 膜作製と特性解析を行った。この膜は硬質で撥水性である。
- (7) 複合場プラズマを用いた PSII 法により、大面積 基材への硬度30GPa の高硬度低摩擦係数 DLC 膜作 製技術を開発した。
- (8) シリコンウエ八再生および DLC 膜再コーティン グのためのプラズマエッチング技術開発を行い、300 mm サイズウエハの10枚同時エッチングが可能と なった。
- (9) チューブ内壁面へのイオン注入、DLC 膜作製技 術を開発した。