海洋産業に用いるデジタルデータと電力の非接触式伝送システムの開発

頭竜二	兵	を長	を援望	見発す	次長 兼 グリーンニューディール技術開
田誠	神	事		参	グリーンニューディール技術開発支援室
口勝身	田	幹	門	専	グリーンニューディール技術開発支援室
子谷 一	丁于	幹	門	専	グリーンニューディール技術開発支援室
川豪	中	充員	壬研3	主任	電子情報科

本研究事業は、海洋関連産業の振興に寄与すべく、金属接点を持たない給電部と受電部のコネクタを接続して 固定することに特徴を持つ非接触給電技術を開発し、これに海水の影響を受けない光通信技術を付加することで、 海面・海中において 90%以上の電力伝送効率と 45 Mbps 以上のデジタルデータ転送速度を実現する小型・軽量 な非接触式伝送システムを開発することを目指している。

研究2年度目となる平成29年度は、初年度(平成28年度)に開発した500 VA 伝送用試作機の各種性能評価 を行うことで、最終的な目標である1.5 kVA の電力を伝送できるシステムの開発に向けた検討を行った。また、 外殻ケースの基本構造についても検討を行った。

1. 緒 言

海洋再生可能エネルギー分野で新たな産業を興すと ともに、その産業拠点を長崎に形成することの重要性 から、県では"ナガサキ・グリーンイノベーション戦略" や"長崎県海洋エネルギー産業拠点形成プロジェクト" が重要な施策として推進されている。

金属接点を持つ接続部品は、錆びや漏電などの問題 があるため、海面や海水中での利用に制限がある。ま た、水中ロボットや観測ブイ、洋上発電装置などとの 接触を行う場合、電力の伝送とともに情報収集やメン テナンスのためのデータ転送が欠かせない。

そこで本研究事業では、県内製造業者の得意技術を 活用して、海洋再生可能エネルギー分野で広く利用可 能なデジタルデータと電力を伝送するシステムを開発 する。具体的には、むき出しの金属接点を持たない給 電部と受電部のコネクタを密着して固定することに特 徴を持つ非接触給電技術を開発する。そして、これに 海水の影響を受けない光通信技術を付加することで、 海面・海中において90%以上の電力伝送効率と45 Mbps 以上のデジタルデータ転送速度を実現する小型・ 軽量な非接触式伝送システムを開発する。

本研究事業の2年度目となる平成29年度は、初年度 に試作した500 VAの電力伝送を実現するシステムにつ いて性能評価を行った。そして、この評価結果に基づき、 中心周波数が85 kHzの高周波電力を用いた新たな非接 触給電回路を試作し、効率90%以上、最大電力伝送容 量1.5 kVAの性能を実現できることを確認した。

2. 方法

2.1 500VA 伝送用試作機の評価

最終的に1.5 kVA の電力伝送を実現するための課題 を明確にするため、初年度の試作機(500 VA の電力 伝送能力)について、昨年度に引き続き幾つかの性能 評価を実施した。ここでは、次の2つを取り上げて説 明する。

(1) 温度上昇と伝送効率

測定は、表1に示す5条件について行った。

測定1と測定2については、条件設定の完了と同時 に通電を開始し、その直後と10分経過時に各部位の 温度と電力の非接触伝送効率の測定を行い、さらに 10分間通電を継続した。測定3については、条件設 定の完了と同時に通電を開始し、その直後と10分経 過時に同様の測定を行った後、40分間通電を停止し て自然冷却した。

続く測定4については、条件設定の完了と同時に通 電を開始し、その直後と10分経過時に同様の測定を 行い、さらに5分間通電を継続した。最後に測定5に ついては、条件設定の完了と同時に通電を開始し、そ の直後と10分経過時に同様の測定を行い、実験を終 了した。

表1 温度上昇と伝送効率の測定条件

	測定1	測定2	測定3	測定4	測定5
コア間距離	1.2 mm	2.2 mm	4.2 mm	1.2 mm	1.2 mm
コア捻じれ角	なし	なし	なし	5°	10 $^\circ$

(2) 漏洩磁界の評価

漏洩磁界の計測は、表2に示す4パターンについて、 当センターの電波暗室内において実施した。

日置電機(株)製の磁界測定器(型番:FT3470-52)を用いて、給電側コアと受電側コアを合わせた中 心部からの距離が0.3mと1mについて磁束密度を測 定し、一般公衆曝露レベルと職業的曝露レベルを評価 した。なお、磁束密度の測定レンジは10Hzから400 kHzまでのレンジであり、今回使用した測定器が有す る設定で最も広範囲の測定レンジである。また、この 測定器の一般公衆曝露レベルの測定モードは、 IEC/EN62233に準拠したものである。

表2 漏洩磁界の測定条件

		測定1	測定2	測定3	測定4
回りの媒質		水	水	水	空気
コア間距離		1.2 mm	2.2 mm	2.2 mm	2.2 mm
ノイズフィルタ	(給電側)	1個	1個	1個	2個
ノイズフィルタ	(受電側)	なし	なし	なし	2個

2.2 1.5kVA伝送用試作機の開発

1.5 kVA の電力伝送を可能にするシステムを完成す るには、高周波電源の開発に加え、最適なコア形状や 捲線の検討、筐体の検討も不可欠である。このため、 基礎的な実験を進めるのに必要な初期の試作機とな る、1.5 kVA の電力を送り出せる高周波電源を開発し、 いくつかの基礎的な実験を行った。

(1) 1.5 kVA 伝送用の高周波電源等の開発

昨年度開発の500 VA 伝送用試作機の回路構成など を基に、1.5 kVA 伝送用の高周波電源(給電側回路) と受電側回路を試作開発した。主だった開発仕様は、 表3に示すとおりである。

表3 開	発主要諸元
------	-------

項目	仕様
高周波電源の入力電源	単相2線式の商用電源
電源電圧	AC 100 V と AC 200 V に対応
電源周波数	50 Hz と 60 Hz に対応
高周波電源出力電力	85 kHz、1750 VA 以上(1500 W 以上)
受電側回路	全派整流方式
受電側回路の定格出力	DC 140 V $ imes$ 11 A

(2) コア形状と電力伝送効率

非接触式伝送システムでは、給電側と受電側との電 磁的な結合にコイルを巻き付けたフェライトコアを用 いる。このフェライトコアの形と大きさがシステム全 体の形状と大きさに関係するため、数種類のフェライ トコアを準備して電力伝送効率などの検証を行った。

電力伝送効率の算出は、図1に示すように、給電側 の高周波電源の入力と受電側の整流後の出力とを利用 して行った。

図1 コア形状と電力伝送効率の実験系

(3) コア形状と熱特性

前述(2)で使用した捲線を巻きつけたフェライトコ ア4種について、受電側の負荷に1500Wの電力を消 費させた状態を30分間維持し、その後のフェライト コアや捲線の表面温度を熱画像診断で評価した。

また、後のシステム構成の有力候補となるフェライ トコアを選定して、温度上昇についての詳しい評価も 行った。

(4) コア近傍の金属への電磁的干渉

非接触式伝送システムでは、嵌合機構を含む筐体も 重要な要素である。そして、この筐体には嵌合機構や 防水性を維持するための剛性と耐久性が必要であり、 材料に金属を使用することが望まれる。このため、コ ア近傍に金属材料を配置することを想定し、金属への 電磁的干渉性について評価した。

評価の方法は、向かい合わせにセットした大型のU 字型コア(⊂⊃の状態でセット)の上面の直上 30 mm のところに金属板を固定し、その金属板の温度上昇を 熱画像で評価した(図2を参照)。

用いた金属は、アルミ(A1050、板厚3mm)、銅(C1100、板厚0.5mm)、非磁性のステンレス (SUS304、板厚0.5mm)、磁性を有するステンレス (SUS430、板厚0.5mm)の4種類である。

3. 結果と考察

3.1 500VA伝送用試作機の評価例

EMI 試験や光通信試験などの評価検証も行ったが、 ここでは、2.1 で示した次の2つの評価例を説明する。

(1) 温度上昇と伝送効率

評価実験の様子を図3に示す。測定では、給電側装

図2 コア近傍の金属への電磁的干渉の評価

置への入力電力、受電側での負荷消費電力に加え、高 周波電力の周波数、主要部位の温度などを計測した。

図4は、第2号試作機についての測定結果例を示している。

給電側コイルと受電側コイルの温度は30℃から45 ℃程度で推移しているが、密閉した樹脂ケース内に 収納した給電側ヒートシンクの温度は、連続給電40 分程度で約80℃まで上昇している。このため、運転 定格は40分程度が限界と推察され、最終的なシステ ム開発では、筐体外に効率よく放熱する工夫が必要で ある。

また、コア間距離の増加とともに電力伝送効率は低 下するが、コア捻じれ角度については目立った影響は 見られなかった。

さらに、温度上昇とともに高周波電力の周波数が高 くなる傾向がみられ、安定性に問題があることも明ら かとなった。

図3 500VA 伝送用試作機の温度上昇と伝送効率の評価

(2) 漏洩磁界の評価

漏洩磁界測定の様子を図5に、評価結果を表4に示 す。測定には第2号試作機を用いた。測定時の受電側 消費電力は約340Wであった。

結果として、対象装置の作動環境が水中であっても 気中であっても測定結果に大きな差はなかった(表4 中の測定3と測定4を参照)。

また、測定距離が至近距離である 0.3 m においても、 一般公衆曝露レベル、職業的曝露レベルともに制限値 以下であった。

長崎県域の地磁気が約47 μ T^{II}、50万ボルト送電 線直下の地表高1mの磁束密度が約6.4 μ T^{II}である ことを考慮すれば、測定対象からの漏洩磁界は、さほ ど問題にならないことが理解できる。

(a) 測定の様子

図 5

(b) 水槽内の様子

漏洩磁界の評価

表4 漏洩磁界の評価系	吉果
-------------	----

		測定1	測定2	測定3	測定4
測定距離: 0.3 m					
磁束密度	[μT]	6.63	4.01	4.57	4.42
一般公衆曝露レベル	[%]	24.6	14.8	16.7	16.3
職業的曝露レベル	[%]	6.6	4.0	4.5	4.4
測定距離: 1 m					
磁束密度	[μ T]	0.344	0.263	0.288	0.273
一般公衆曝露レベル	[%]	1.2	0.9	1.0	1.0
職業的曝露レベル	[%]	0.3	0.3	0.3	0.3

3.2 1.5kVA伝送用試作機の開発

1.5 kVA 伝送を実現するための各種実験を進めるの に必要な試作機として、初期型の高周波電源を開発し、 いくつかの基礎的実験を行った。

(1) 1.5 kVA 伝送用の高周波電源等の開発

試作開発した給電側回路(高周波電源回路)と受電 側回路の外観を図6に示す。大きさは、給電側回路が おおよそ210 mm × 190 mm × 80 mm、受電側が同じ く100 mm × 150 mm × 50 mm 程度であった。

基本的な回路構成は、初年度に開発した500 VA 伝 送用試作機と同じである。給電側回路では、パワー半 導体の見直しや、前段に昇圧回路を実装するなどして、 扱える電力量を大幅に増やし、1.5 kW の出力に備えた。 さらに、受電側で取り出す電力を安定化するためのフ ィードバック方式を検討開発するため、受電側から給 電側へのフィードバック機能を実装できるインタフェ ースを準備し、後の評価実験に備えた。

(a) 給電側回路(b) 受電側回路図6 試作開発した給電側回路と受電側回路の外観

(2) コア形状と電力伝送効率

評価には図7に示す4種類のコア^{(3),4]}を使用した。 順に、大⊂型コア、I2型コア、匚2型コア、E2型コ アと称する。大⊂型コアはメーカ標準品をそのまま使 用した。I2型コア、匚2型コア、E2型コアはコア材 を2枚重ねることで断面積を増やす措置をとった。な おI2型コアについては、標準のコア材を切断して、 棒状のフェライト材として使用した。同じく匚2型コ アについても、標準のコア材から切り出した棒状のフ ェライト材を匚の字型に接合して使用した。なお、材 料として用いたコア材のメーカ型番などの情報を表5 の上段に示した。そして、これらのコアに、それぞれ 巻き数などの適切な条件を満たす捲線を巻きつけて使 用した。

表5の下段には、電力伝送効率の評価結果を示して いる。12.82 Ωの定抵抗モードで作動する電子負荷装 置を負荷として接続した評価実験を行った結果、準備 した4種のコアについて、1.5 kWの電力を負荷に与え ることができた。なお、**I2**型コアの場合のみ、電力 伝送効率が僅かではあるが90%を下回る結果となっ た。

システム全体の形状と大きさに影響を与えるため、 フェライトコアの形と大きさも加味すれば、□2型コ アとE2型コアが候補となる。さらに、捲線の巻きや すさを考えれば、□2型コアが有力候補となる。

図7 準備したコアの形状

表5 コアの仕様と評価結果

項目\名称	大C 型コア	【2型コア	■2型コア	E2 型コア
使用コア	TDK PC40	TDK PC40	TDK PC40	TDK PC40
メーカ型番	UU100x151x30	UU80x150x30N	UU80x150x30N	EC90x90x30
利用形態	原型	切り出し	改造	原型
コア外観	図 6 (a)	図6(b)	図6 (c)	図6 (d)
コア形状	U字型	I型	U字型	E字型
コア断面積 [mm²]	915	600×2	600×2	626×2
捲線を含む重量				
給電側 [g]	788	496	1175	727
受電側 [g]	793	505	1178	727
給電側				
入力電圧 [V]	273	209	304.6	289.5
入力電流 [A]	5.89	8.15	5.37	5.58
受電側				
出力電圧 [V]	138.7	139.0	139.6	139.1
出力電力 [W]	1508	1524	1529	1518
電力伝送効率	93.8 %	89.5 %	93.5 %	94.0 %

(3) コア形状と熱特性

図8は、4種のコアについての実験時のトゥルーカ ラー画像と熱画像である。各熱画像での最高温度は、 大⊂型コア:40℃、I2型コア:62℃、匚2型コア: 32℃、E2型コア:50℃であった(カラー画像はpdf 版を参照)。

通電時の温度上昇値が最も小さいのは**□2**型コアで あった。一方、温度上昇値が大きいのは**□2**型コアと **E2**型コアであった。ただし、捲線を含むコアの重さ で考えれば、**□2**型コアが最も重く、**I2**型コアと**E 2**型コアは比較的軽量であった。

本研究では、これらの結果に上述(2)の結果を加味 して検討し、**C2**型コアをベースとして今後の評価・ 検討を進めることとした。実際の評価では、標準コア PC40 UU80×150×30N を 2 枚重ねたものに捲線を巻 いた後、不要なU字の開放先端部を切り落とし、U字 底辺から開放先端までの寸法を 30 mm に切り詰めた もの(以下、**匚2s**型コアと称す)を使用した。

図 9 (a) は**□2 s**型コアの外観である。図10は、 受電側に接続した電子負荷に適宜適切な設定を与えて 負荷に消費させる電力を797 W、1000 W、1206 W、 1306 W、1410 W、1517 W とし、それぞれの設定にお いて温度変化が安定したところで熱電対を用いて温度 特性を評価したものである。また、図 9 (b) には、受 電側負荷の消費電力が1517 W の時の熱画像を併せて 示している。

結果、熱電対における温度測定では、1517 W時の 受電側の巻線の外側が最も高く、 $45.6 C (\Delta t 25.6 C)$ であった。熱画像からは全体的に給電側の巻線の温度 が高いと判断できるが、熱電対による測定では37 C($\Delta t 17 C$) であり、いずれも技術的には大きな課題 にはならないと判断できる。

(4) コア近傍の金属への電磁的干渉

図11は、受電側負荷が消費する電力を1500Wに 調整したときの、コア直上の金属板の温度上昇を示す 熱画像である(カラー画像は pdf 版を参照)。

図 から分 かるように、アルミ(A1050)と銅 (C1100)については、温度上昇は認められなかった。 ステンレスについては、非磁性ステンレス(SUS304) で最高温度 46℃、磁性ステンレス(SUS430)で最高 温度 72℃であった。

これらの結果から、コア外周については、アルミ材 と銅材の使用が可能であると判断できる。

なお、コア間に金属を配置すれば、急激な発熱現象 などが当然に予測されるので、コア間は樹脂等で防水 処理を施すことが必要であることに容易に想到する。

4. 結 言

研究事業2年度目である平成29年度は、最終的な 目標である1.5 kVAの電力を伝送できるシステムの開 発に向け、初年度(平成28年度)に開発した500 VA 伝送用試作機を用いて電力伝送に関するいくつかの性 能評価を行った。この結果、最終的なシステム開発で は筐体外に効率よく放熱する工夫が必要であることを 確認した。また、漏洩磁界については、その絶対量が 少なく、装置からの距離が0.3 mの箇所の一般公衆曝

(a) **大C**型コア

(b) I2型コア

(c) **匚2**型コア

(d) **E2**型コア図8 コアと捲線の表面温度

(a) 外観(b) 熱画像(1517 ₩)図9 **□2** s 型コアの外観と熱画像

露レベルも約 25 % 程度であり、大きな問題とはなら ないことも確認できた。

次に、1.5 kVA の電力を伝送できる高周波電源など を試作し、使用するコア材の形状、筐体に使用する材 料との電磁干渉性などについて検討を加えた。この結 果、コア材には市販標準のU字型コアを2枚重ねて使 用するのが開発システムに適していることや、コア材 周辺の材料(筐体の材料)にはアルミ材等の磁性を持 たない金属が使用できることなどを確認した。

また、ここでは報告を省略したが、光パルス信号を 用いて受電側から送電側に受電電圧情報をフィードバ ックする方法についても検討を行い、その実現性の実 証を行った。さらに、嵌合部を含む筐体の基本構造に ついても検討を行った。

今後は、最終的な電力伝送用の回路、嵌合部を含む 筐体などの開発を完了し、非接触伝送システムとして の完成を目指すとともに、県内企業への技術移転も適 宜、進めて行く考えである。

(a) F/ν (A1050) (b) 銅 (C1100) アルミ (A1050) (c) 銅 (C1100) アルシ (SUS304) (d) ステンレス (SUS430)

(c) ステンレス (SUS304)(d) ステンレス (SUS430図11 コア直上に配置した金属板の熱画像

謝 辞

本研究事業を推進するにあたり、長崎大学海洋未来 イノベーション機構の山本郁夫教授と長崎大学大学院 工学研究科の盛永明啓准教授、長崎大学大学院工学研 究科の樋口剛教授と横井裕一准教授、イサハヤ電子株 式会社の徳永秀昭部長と服部慎一郎氏と手束翔氏、ロ ボットテクノス株式会社の長嶋豊研究開発部長に、多 大なるご協力とご支援を頂いた。

参考文献

- [1] 国土地理院地磁気測量, 地磁気を求める, https://vldb.gsi.go.jp/sokuchi/geomag/menu_04/index.html, (accessed 12 Jul. 2018).
- [2] 東京電力パワーグリッド株式会社、なるほど電磁 波!~身近な電磁波と健康のはなし~, 2016.10.
- [3] TDK, Mn-Zn系大電力用フェライトコアEシ リーズ, 2016.6.
- [4] TDK, Mn-Zn系大電力用フェライトコアUU シリーズ, 2016.6.